Sigma compact pullback attractor and statistical solutions for the semi-dissipative Boussinesq system

发布时间:2026-01-13浏览次数:10

报告人:赵才地(温州大学数理学院特聘教授、博士生导师)

时间:1月14日14:30-15:10

地点:36-507

Abstract: In this talk, we discuss the pullback dynamics and statistical solutions for the Boussinesq system involving a dissipative parabolic equation for the velocity field and a conservative hyperbolic equation for the temperature. We adopt the strong topology in space $H^1$ for the velocity field and employ the weak topology in space $L^2$ for the temperature, and then prove that the generated evolution process of the solution mappings possesses a sigma compact pullback attractor in space $H^1 \times L^2$ under this mixed topology. Afterwards, we establish that the evolution process possesses a family of invariant Borel probability measures with supports contained in the obtained pullback attractor. Finally, we prove that a family of probability measures satisfies Liouville's equation and is a statistical solution for the addressed Boussinesq system.

报告人简介:赵才地,温州大学特聘教授,韩国全南大学兼职博导,浙江省新世纪人才,温州市领军人才,主要从事非线性发展方程——无穷维动力系统方面的研究,在《Math. Ann》、《J. Differential Equations》、《Nonlinearity》、《Science China: Math》等期刊上发表论文60余篇,主持国家级科研项目5项(其中自然科学基金面上项目3项),浙江省自然科学基金重点项目1项和面上项目2项,中国博士后科学基金1项,曾获浙江省自然科学三等奖和浙江省数学会优秀科研成果二等奖。